Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression.
نویسندگان
چکیده
Tamm-Horsfall protein (THP) is a glycoprotein with unclear functions expressed exclusively in thick ascending limbs (TAL) of the kidney. Its role in ischemic acute kidney injury is uncertain, with previous data suggesting a possible negative effect by enhancing cast formation and promoting inflammation. Using a recently characterized THP knockout mouse (THP-/-), we investigated the role of THP in renal ischemia-reperfusion injury (IRI). In wild-type mice (THP+/+), THP expression was increased by injury. THP-/- mice developed more functional and histological renal damage after IRI compared with THP+/+. THP-/- kidneys showed more inflammation and tubular necrosis. Cast formation correlated with the severity of injury and was independent of THP presence. THP absence was associated with a more necrotic, rather than apoptotic, phenotype of cell death. The outer medulla was predominantly affected, where significant interstitial neutrophil infiltration was detected in proximity to injured S3 proximal tubular segments and TAL. This coincided with an enhanced expression of the innate immunity receptor Toll-like receptor 4 (TLR4) in S3 segments of THP-/- compared with THP+/+ mice. Specifically, a basolateral S3 expression of TLR4 was more evident in THP-/- kidneys compared with a more apical distribution in THP+/+. Such basolateral location for TLR4 allows a greater interaction with proinflammatory ligands present in the interstitium during ischemia. In conclusion, we are showing a completely novel role for a very old protein in the setting of renal injury. Our data suggest that THP stabilizes the outer medulla in the face of injury by decreasing inflammation, possibly through an effect on TLR4.
منابع مشابه
Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism.
Tamm-Horsfall glycoprotein (THP) is expressed exclusively in the kidney and constitutes the most abundant protein in mammalian urine. A critical role for THP in antibacterial host defense and inflammatory disorders of the urogenital tract has been suggested. We demonstrate that THP activates myeloid DCs via Toll-like receptor-4 (TLR4) to acquire a fully mature DC phenotype. THP triggers typical...
متن کاملEndothelial pentraxin 3 contributes to murine ischemic acute kidney injury
Toll-like receptor 4 (TLR4), a receptor for damage-associated molecular pattern molecules and also the lipopolysaccharide receptor, is required for early endothelial activation leading to maximal inflammation and injury during murine ischemic acute kidney injury. DNA microarray analysis of ischemic kidneys from TLR4-sufficient and -deficient mice showed that pentraxin 3 (PTX3) was upregulated o...
متن کاملProtective role of remote ischemic per-conditioning in acute renal injury induced by ischemia reperfusion via TLR-4 and TNF-α signaling pathway in rats
sIntroduction: Acute kidney injury (AKI) induced by ischemia-reperfusion (I / R) of the kidney as an inflammatory process in which multiple inflammatory factors are involved. Recently, one of the modalities of inflammation in AKI is Remote Ischemic Per-Conditioning (RIPerC). Materials and Methods: In this study, bilateral renal artery and vein occlusion were done for 45 minute and reperfusion a...
متن کاملTamm-Horsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism.
Tamm-Horsfall protein (THP) is a glycoprotein expressed exclusively in thick ascending limbs (TAL) of the kidney. We recently described a novel protective role of THP against acute kidney injury (AKI) via downregulation of inflammation in the outer medulla. Our current study investigates the mechanistic relationships among the status of THP, inflammation, and tubular injury. Using an ischemia-r...
متن کاملRole of Tamm-Horsfall protein and uromodulin in calcium oxalate crystallization.
One of the defenses against nephrolithiasis is provided by macromolecules that modulate the nucleation, growth, aggregation and retention of crystals in the kidneys. The aim of the present study was to determine the behavior of two of these proteins, Tamm-Horsfall and uromodulin, in calcium oxalate crystallization in vitro. We studied a group of 10 male stone formers who had formed at least one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 295 2 شماره
صفحات -
تاریخ انتشار 2008